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Abstract

I propose a framework to analyze peer effects by modeling a latent
sequence of decisions in continuous time. The method avoids regres-
sion on conditional expectations – and thus reflection type problems
(Manski, 1993) – and ’outcome on means’ regression by positing a
direction of realized causality, which may not be observed but is sub-
ject to probabilistic quantification. I define a peer effect parameter
meant to capture the causal peer influence of the first-movers. The
parameter – and possibly covariates’ coefficient – is shown to be con-
sistently estimated by maximum of likelihood methods and lends itself
to standard inference.
Keywords: Peer effects, Continuous time, Networks, Spatial econo-
metrics.

1 Introduction

Peer effects have traditionally been investigated via estimation of models of
the form E[y|x, z] = f(E[y|x], z), where x are characteristics used to define
peer group and z are covariates directly affecting the outcome. The practice
has been criticized both on theoretical and empirical grounds (Manski, 1993;
Angrist, 2014). Indeed, this type of model – even in nonlinear forms – is
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tautological as it suffers from the reflection problem (Manski, 1993), which
threatens its well-definedness and leads to identification issues.

Spatial Autoregressive Models (SAR; Lee (2004)) models bypass some of
these concerns. Reflection issues disappear when the conditional expecta-
tion is replaced by a weighted average of outcomes – typically not meant to
estimate the conditional expectation, but rather to characterize a system’s
equilibrium relationship. Relatedly, the use of non-overlapping peer groups
may alleviate reflection concerns and allow peer effect identification and es-
timation (Bramoullé, Djebbari and Fortin, 2009; De Giorgi, Pellizzari and
Redaelli, 2010).

Nevertheless, these models are not immune to all empirical concerns
brought in Angrist (2014) and may generate spurious peer effects. In ad-
dition, such models most naturally represent simultaneous decisions or equi-
librium results; they are less suited for sequential, irreversible decisions. They
do not provide a framework to discuss causality questions, diffusion, or iden-
tification of first movers and (probability of the) sequence of arrivals. For
many applications, it is likely that peer effects hinge on the sequential nature
of decisions and that first movers exert social influence, rather than on the
generic influence of a peer group that leads to simultaneity issues.

I propose a new framework to analyze peer effects and model the latent
sequence of decisions in continuous time. I define a causal peer effect param-
eter that can be consistently estimated by maximum of likelihood methods.
Decisions are explicitely made asynchronously, though their timing may not
be observed. The paper applies to both spatial and network applications, and
as such has also connections to diffusion problems in the network literature
(e.g., He and Song (2018)).

2 Model and Likelihood

2.1 Motivation and identification in a simple case

Consider two individuals (i = 1, 2) who can make an irreversible decision
(e.g., getting a vaccine) at any point during a time frame represented by
the interval [0;S], where 0 is the start of eligibility and S is the time to
observation, and indicate ’activation’ by yi = 1. Let the distribution of
the time before decision be exponential with rates λ1, λ2. The decision of
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an individual may affect the probability that the other opts in, modifying
the rate of time to activation to λ+2

1 or λ+1
2 from that point on. Here, the

subscript on the + indicates whose move triggered a change in rate. Since
there are only two people in this introductory example, the subscript can
and will be dropped in the remained of the subsection. The resulting change
in the distribution of outcomes can be viewed as a causal peer effect.

The probabilities for the four possible outcomes follows from algebra:

p00
def
= P[y1 = y2 = 0] = e−(λ1+λ2)S

p10
def
= P[y1 = 1, y2 = 0] =

λ1e
−λ+2 S

(λ1 + λ2 − λ+
2 )

(1− e−(λ1+λ2−λ+2 )S)

p01
def
= P[y1 = 0, y2 = 1] =

λ2e
−λ+1 S

(λ1 + λ2 − λ+
1 )

(1− e−(λ1+λ2−λ+1 )S)

p11
def
= P[y1 = y2 = 1] = 1− p00 − p10 − p01

If λ1 = λ2 (or more generally if λi = f(xi; θ) for a function f , observed
covariates xi, and finite dimensional identifiable parameter θ; λ1 = λ2 cor-
responding to the intercept case with x1 = x2), the family of rates can be

obtained given the probabilities. In this case, λ1 = λ2 = − ln(p00)
2S

and λ+
2 can

be recovered from −λ1S(e−λ
+
2 S−p00)

ln(p00)+λ+2 S
= p10, where the left-hand side is strictly

decreasing1. λ+
1 can be obtained analogously.

Although it is not possible to identify the identity of the first mover –
the individual who may have exerted a peer effect on the other individual –
when y1 = y2 = 1, it is possible to (i) estimate the peer effect strengths and
(ii) determine the probability of an individual moving first whenever the λ’s
are identified.

Note that in the absence of peer effects – λ+
i = λi for i = 1 and i = 2

– the probabilities reduce to a standard exponential race with independent.
The change in the exponential rates is thus a measure of dependence and
social interaction, which will later be captured by a parameter δ ∈ R.

Moving beyond this simple example, one might attempt to extend the
analysis to arbitrary group sizes and to obtain an estimator of the family

1Its derivative reads λ1S
−p00+e−λ

+
2 S+e−λ

+
2 Sλ+

2 S+ln(p00)e
−λ+2 S

(ln(p00)+λ
+
2 S)

2
and the numerator is pos-

itive.
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of rates. In the following subsections, I formalize the underlying stochastic
process and show that, given data on yi, i = 1, · · · , n (and possibly covariates

xi) the probability of the sample P (y1, . . . , yn|x1, . . . , xn, {λ
+k1 ,...,+km
i )}) has

a closed form solution. This suggests a maximum of likelihood estimator
whose asymptotic properties are investigated in Section 3. Consistency of
the family of λ’s follows upon necessary restrictions for identification.

2.2 Framework and peer effects

Consider a sample of (binary) variable yi, covariates xi, and an adjacency
matrix W (Wij = 1 if and only if i and j are ’neighbors’ or ’friends’) that
determines individuals’ peer group.

The goal is to model and estimate peer effects, i.e. how the decision of
peers alters the decision probability of an individual. I consider a ’default’
situation with yi = 0 (typically, ’doing nothing’, the inertia decision) and the
decision to ’activate’ (switch to 1) is irreversible (similarly, that only first
time event matters). Observing someone activating modifies the likelihood
that others do so. For instance, y might represent vaccination status, a
decision to exert effort, technology adoption, a decision to attend college or
an event, etc.

Individual activation is modelled with the following continuous time stochas-
tic process:
Let T 1

i be an Exponential distribution with rate λi for all i. When a first
individual, say k, activates (T 1

k = min(T 1
i )), the rates for activation evolve

to λ+k
i for all of k’s neighbors. The process then repeats with the altered

rates, and so on. The time to activation is thus Ti =
∑τi

t=1 T
t
kt

, where kt is
the index of the ’winner’ at stage t, and we observe yi = 1Ti≤S at time S. S
is a timeline during which each individual had the opportunity to activate.
S can be the time up to a deadline, a school year, or the time elapsed from
availability/eligibility to observation by the researcher.

I focus on Exponential distributions for two reasons. First, exponential
waiting times arise automatically under the assumption of a constant proba-
bility per unit time, a natural point of departure. Second, this process offers
computational niceties because of the properties of the exponential. When
k activates, the clock should be restarted for all of his or her friends, but
not for anyone else. However, due to the memorylessness property, the clock
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may be re-started for everyone, with the rate of non-friend left unchanged.
This can make both theoretical analysis and simulations simpler.

The model is viewed as causal, with elements of a potential outcome
framework, in that some individuals will be subject a to peer effect - ”treat-
ment” - and some will not. There are two main departures from a classical
treatment effect framework, which stem from the nature of the problem: one’s
outcome induces another’s treatment and this direction is often unobserved
because information about the order of activations is typically limited, and
there are multiple possible treatments that correspond to all possible dynamic
selection of peers.

Peer effect are defined at the individual level through the changes in λi
induced by neighboring activations. The model posits the existence (ex post)
of a direction of causality, though the realized direction may not be observed
by the researcher. This puts peer effects on stronger theoretical grounds as it
defines a structural peer effect parameter and avoids ill-defined peer groups,
which tend to be subject to the reflection problem (Manski, 1993).

2.3 Likelihood

Assume without loss that the activated observations are 1, . . . , G. Since the
sequence of arrivals is unknown, the probability of the sample corresponds
to

P[y1, . . . , yG ≤ S; yG+1, . . . , yN > S]

=
∑
p∈P

P[y1, . . . , yG ≤ S; yG+1, · · · , yN > S;Tp1 < . . . < TpG ]

where the sum is over all permutations (with generic element p = (p1, . . . , pG))
of the G first arrivals.

The representative term in the permutation, (displayed for convenience
with individual 1 arriving first, followed by individual 2, etc.) is then com-
puted as
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∫ S

0

∫ ∞
t11

· · ·
∫ ∞
t11

N∏
i=1

λie
−λit1i

∫ S−t11

0

· · ·
∫ ∞
t22

N∏
i=2

λ+1
1 e−λ

+1
i t2i · · ·

∫ S−
∑G−1
g=1 t

g
g

0

· · ·
∫ ∞
tGG

N∏
i=G

λ
+1···+G−1

i e−λ
+1···+G−1
i tGi

∫ ∞
S−

∑G
g=1 t

g
g

· · ·
∫ ∞
S−

∑G
g=1 t

g
g

N∏
i=G+1

λ+1···+G
i e−λ

+1···+G
i tG+1

i

dt11 · · · dt1Ndt22 · · · dt2N · · · dtGG · · · dtGN · · · dtG+1
1 · · · dtG+1

N

which, after some algebra, reduces to

e−
∑N
i=G+1 λ

+1,···,+G
i S

(
G∏
i=1

λ
+1,···,+i−1

i

)
I{ci,i=1,···,G} (1)

where I{hi,i=1,···,H}
def
= 1∏G

g=1 cg
+ (−1)G

∑G
g=1

1∏
h 6=g(cg−ch)

e−cgS

cg
and

ck
def
=
∑N

i=k λ
+1,···,+k−1

i −
∑N

i=G+1 λ
+1,···,+G
i .

Introducing cG+1 = 0, the term simplifies to
∑G+1

g=1
e−cgS∏
h 6=g ch−cg

and then

the likelihood can be further reduced to

G∏
i=1

λ
+1,···,+i−1

i

G+1∑
g=1

e−c̈gS∏
h6=g c̈h − c̈g

(2)

where c̈g
def
= cg +

∑N
i=G+1 λ

+1,···,+G
i =

∑N
i=k λ

+1,···,+k−1

i ≥ 0 (with equality only
if g = G+ 1 and N = G).

In this form, the model is general and handles considerable heterogeneity,
albeit with too many parameters to be identified as such. One may restrict
the heterogeneity in various ways, depending on empirical concerns and the
goal of the analysis (for instance, whether heterogeneity in initial rates, in
peer effects, in the identity of first-mover, etc. are more relevant).

A leading case of interest naturally arises from the desire to define a
simple peer effect parameter while accounting for individual heterogeneity
through observed covariates xi. A way to make the model parsimonious and

to incorporate covariates is to specify λ
+k1 ···+kL
i = ex

′
iβ+Ni(k1,···,kL)δ (or any
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sensible link function in place of the exponential), where Ni(k1, . . . , kL) is
the number of neighbors for i among k1, . . . , kL. Various related models can
be specified to deal with the specifics of peer effects in a given application.
For instance, if there are different ’types’ of links with varying peer effect
strengths, one can replace by Niδ by

∑
T δjN

T
i . Such a case occurs when peer

effects are expected to be, say, stronger with friends than family members
and the modeler would expect N friend

i to be associated to a higher coefficient,
δfriend, than that of N family

i , δfamily.

Interaction terms of the form (Nixik) may also be added to account for the
effect of a covariate, xik, on the strength of peer effects and Ni may be filtered
through a nonlinear function to reflect, e.g., decreasing peer strength in the
activated friend count. Finally, the functional form may also be modified,
for instance by substituting the exponential by the positive part or using the
average number of activated neighbors instead of the total.

Although summing over all permutations can lead to an impractical com-
putational burden, the cost is significantly smaller in practice. First, the like-
lihood factorizes if W can be divided into non-connected subgraphs, which
occurs frequently with separations into distinct classrooms, villages, etc. Sec-
ond, additional information - such as partial knowledge of the order of acti-
vations - substantially reduces the complexity of permutations.

Third, approximations can further cut the number of permutations. In
particular, maximizing the log-likelihood amounts to maximizing

ln
(

1
G!

∑
p∈P

(∏G
i=1 λ

+p1 ,···,+pi−1
pi

)∑G+1
g=1

e
−c̈pg S∏

h 6=g c̈ph−c̈pg

)
where the average over all permutations can be estimated by a random sample
of permutations by the law of large numbers.

Note finally that when individuals are broadly similar or when the net-
work exhibits symmetry, it may be possible to group terms or simplify inter-
mediate computations.

If sampling is skewed/tilted, we have for a sample Ps that
1
|Ps|
∑

p∈Ps ∂θP[p]/P[p]→p
∑

p∈P
∂θP[p]∑
p∈P P[p]

1
|Ps|
∑

p∈Ps 1/P[p]→p G!∑
p∈P P[p]

using that P[p]∑
p∈P P[p]

is the probability of sam-

pling permutation p under tilted sampling.

7



2023

2.4 Particular case

Suppose there is no heterogeneity nor peer effects: λ
{+}
i = λ for all i and

collection of +.
Then c̈g = λ(N − (g − 1)) and the likelihood of ordering p becomes

G∏
i=1

λ
+1,···,+i−1

i

G+1∑
g=1

e−c̈gS∏
h6=g c̈h − c̈g

= λG
G+1∑
g=1

e−λ(N−(g−1))S∏
h6=g λ(N − (h− 1))− λ(N − (g − 1))

=
G+1∑
g=1

eλ(g−1)S∏
h6=g h− g

=
G+1∑
g=1

eλ(g−1)S

(g − 1)! (G+ 1− g)!
(−1)G+1−g

=
e−λNS(eλS − 1)G

G!

=
e−λ(N−G)S(1− e−λS)G

G!
(3)

Summing over all permutations yields e−λ(N−G)S(1− e−λS)G, which is the
likelihood from iid exponential random variables.

3 Asymptotic Theory

I focus on the simple model suggested in the previous section, i.e. the family

of rates are determined by λ
+k1 ···+km
i = ex

′
iβ+

∑m
j=1W (i,kj)δ.

More complex models can be handled similarly, the main threat to con-
sistent estimation coming from (lack of) identification when the number of
parameters is too large. Identification is primarily a matter of imposing
structure on the family of lambda’s as to limit the number of parameters.
It is easily achieved in parsimonious models as the introductory example
suggests.

The asymptotic behavior of the estimator can be analyzed conditionally
on the network W and covariates xi. Consider a distribution of ’blocks’ or
’classes’ of size nb, which will be assumed bounded by nb. We observe the
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blocks b = 1, · · · , B with size nb so that the sample size is N
def
=
∑B

b=1 nb.
Any individual i in the sample belongs to one block, denoted by b(i), and
a block contains a set of nb individuals, listed through i(b). I will make use

the notation ij(b) to denote all the pairs in block b, i.e. ij(b)
def
= {(i, j) : i 6=

j, b(i) = b(j) = b}. To ease notation, conditioning on covariates and network
structure is omitted.

The log-likelihood factorizes as
l

def
=
∑

y∈∆N
1Y=y ln(P[Y = y]) =

∑B
b=1

∑
yi(b)∈∆nb

ln(P[Yi(b) = yi(b)]), where

∆N
def
= {0, 1}N , and asymptotics will rely on B (and thus N) going to infinity.

The log-likelihood can be derived for each block from the formula es-
tablished in the previous section. For illustration, consider the first block
and let P contain the permutations of 1, . . . , G, whose terms I represent by
p

def
= {p1, . . . , pG}. Then, the probability in the first block, ln(P[Yi(1) = yi(1)]),

is given by

ln

(∑
p∈P

e
∑G1
i=1 x

′
pi
β+Npi (p1,···,pi−1)δI{cpk,k=1,···,G1}

)
−

n1∑
i=G1+1

ex
′
iβ+Ni(1,···,G1)S (4)

where cpk
def
=
∑n1

i=k e
x
′
pi
β+Npi (p1,...,pk−1)δ −

∑n1

i=G1+1 e
x
′
iβ+Ni(1,...,G1)δ.

Its derivatives, from which the score can be easily constructed, are given
by

∂ ln(P[Yi(1) = yi(1)])

∂β
=

∑
p∈P e

∑G1
i=1 x

′
pi
β+Npi (p1,...,pi−1)δ∂βI{cpk,k=1,...,G1}∑

p∈P e
∑G
i=1 x

′
pi
β+Npi (p1,...,pi−1)δI{cpk,k=1,...,G1}

+

G1∑
i=1

xpi −
n1∑

i=G1+1

ex
′
iβS+

∑G
j=1W (i,j)δSxi

(5)
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and

∂ ln(P[Yi(1) = yi(1)])

∂δ
=

∑
p∈P e

∑G1
i=1 x

′
pi
β+Npi (p1,...,pi−1)δI{cpk,k=1,...,G1}

∑G
i=1Npi(p1, . . . , pi−1)∑

p∈P e
∑G
i=1 x

′
pi
β+Npi (p1,...,pi−1)δI{cpk,k=1,...,G1}

+

∑
p∈P e

∑G1
i=1 x

′
pi
β+Npi (p1,...,pi−1)δ∂δI{cpk,k=1,...,G1}∑

p∈P e
∑G1
i=1 x

′
pi
β+Npi (p1,...,pi−1)δI{cpk,k=1,...,G1}

−
n1∑

i=G1+1

ex
′
iβS+

∑G1
j=1W (i,j)δSNi(1, . . . , G1)

(6)

In these expressions, the derivative of the I-term can be computed as

∂I{hi,i=1,...,H} =
−

∑G
g=1

∂cg
cg∏G

g=1 cg
−(−1)G

∑G
g=1

1∏
h 6=g(cg−ch)

e−cgS

cg

[
∂cgS + ∂cg

cg
+
∑

h6=g
∂cg−∂ch
cg−ch

]
The maximum likelihood estimator is consistent and asymptotically nor-

mal under regularity conditions. Specifically, one can verify Newey and
McFadden (1994)’s sufficient conditions for extremum estimators, assuming
(β, δ) ∈ B × S, a compact set.

First, (β, δ) is identified, e.g. β is identified from P[Yb = 0|W,xi] (as func-
tion of the observed xi) and then δ is identified from P[Yb = e1]. The space
(β, δ) ∈ B × S is compact by assumption and the limit objective function is
continuous.
Finally, 1

B

∑B
b=1

∑
yb∈{0,1}nb P[Yb = yb] ln(P[Yb = yb]) ≤ 1

B

∑B
b=1 ln(nb) ≤

ln(nb), bounding the entropy by that of the uniform distribution and then
using the bound on group size. As a result, uniform laws of large numbers
apply and the sample objective function converges uniformly in probability.

This implies the following theorem:

Theorem 3.1 (Consistency). Suppose the data generating process is given by

the stochastic process described in Section 2.2 with rates given by λ
+k1 ···+km
i =

ex
′
iβ+

∑m
j=1W (i,kj)δ and (β, δ) ∈ B × S, a compact set. Then, the proposed

maximum likelihood estimator is consistent with (β̂, δ̂)→p (β, δ) as B →∞.

Moreover,

Theorem 3.2 (Asymptotic Normality). Under the assumptions of Theorem
3.1, the maximum likelihood estimator is asymptotically normal as B → ∞
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with

√
B

((
β̂

δ̂

)
−
(
β
δ

))
→d N

((
0
0

)
;E

[(
∂lb
∂β

∂lb
∂β′

∂lb
∂β

∂lb
∂δ

∂lb
∂δ

∂lb
∂β′

∂l1
∂δ

∂lb
∂δ

)])
(7)

As a result, inference can be carried out about both the effects of covari-
ates and peer effects. Another consequence of the theorems is the consistent
estimation of the exponential rates. It may be of interest to identify the ’lead-
ers’ and the ’followers’ in any sub-block of connected activated people, i.e.
individuals who were activated first and those who responded later. While
the identity of the first activated individual is not identifiable, consistent es-
timation of the λ’s allows one to recover the probability that i was the first
to activate as well as (probabilistic) relative rankings of order of activation.

Remark: Spatial dependence Spatial dependence is determined by
the value of δ in addition to the network structure. In particular, observations
are independent in the absence of peer effects (δ = 0). This suggests that
blocks with weak ties (relative to δ for given structure and initial rates) could
sometimes be treated as approximately independent. Although a detailed
analysis of these types of argument is beyond the scope of the paper, it may
be a useful relaxation of the block structure for some applications.

Remark: Continuous outcomes Continuous random variables can
be handled by adding an optimization over unobserved binary activation
status. For instance, let Y be the binary activation status and y be the
final (continuous) outcome given by y = Z + 1Y≤Sµ, where for instance
Z|X ∼ N (X ′γ, σ2) For any candidate vector Y ∈ {0, 1}N , this leads to a
sum over all possible activation patterns and the resulting likelihood can be
optimized over to obtain a maximum of likelihood estimator.

Remark: Forecasts One can use the estimated β and δ and determine
the most likely next activated person, average time to activation, etc. This
can allow some tests on the model if there is a subsequent measurement after
S.

Remark: Counterfactual analysis It is often of interest to assess the
impact of policies, for instance targeting influential individuals in a network.
The peer effect parameter allows a direct evaluation of the direct effect of
imposing yi = 1 at a given point. It is also easy to simulate the evolution of a
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network with and without imposing yi = 1 for a group of selected individuals
at time 0 and to assess the change in probabilities that yk = 1 for k 6= i.

Remark: Exogenous peer effects One may add a ”WX term” to the
argument of the exponential to account for so-called exogenous peer effects,
which affect one’s outcome through the characteristics of peers.

4 Simulations

I now assess the performance of the estimator in simulations. I first consider
’correctly specified’ models in which all relevant covariates are available. In
the second subsection, I investigate the robustness of the estimator to omitted
variables, measurement errors, and group heterogeneities.

4.1 Simulations with block and homophilic network
formation

I simulate the stochastic process described in Section 2.2 with an underlying
network structure of either ’classrooms’ or homophilic matching type, both
of which are common in empirical studies.

First, I construct a network with 1000 individuals and a ’block’ structure
((W = I ⊗ ιι′)) with groups of size 5, 10, and 20. In the previous section’s
notation, this means N = 1000, nb = 5 ∀b, and B = 1000/nb and individuals
are connected to all individuals within the same block. I set the family of

rates to obey λ
+k1 ···+km
i = e

x
′
iβ+

∑m
j=1W (i,kj)∑n
j=1

W (i,j)
δ

with two covariates (uniformly on
[−1; 1] and (standard) normally distributed, respectively), various levels of

peer effect strength δ (−0.5, 0, and 0.5), and β =

(
1

0.5

)
.

There is no information about the order of activations so all permutations
a priori matter. I make use of the random sampling over permutations
mentioned in Section 2 to alleviate the computational burden whenever the
number of activated people in a group exceeds 8.

Estimates are compared to SAR estimates from a simple (endogenous)
regression on xi and Wiy and to the SAR maximum likelihood estimator2

2The weighting matrix is row-normalized since the process suggests peer effects depend
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These are frequent estimates of peer effects which can be hoped to capture
whether there is a peer influence, but cannot be expected to be consistent
given incorrect specification; they would not capture the true nature of the
peer effects, but could detect their sign and presence. Coefficients on co-
variates, which are also reported, have similarly no direct counterparts in a
linear model and are not expected to be consistently estimated by regression
or SAR MLE.

The results are reported in Table 1. The maximum of likelihood estimator
described in the previous section performs well in all instances and exhibits
very low bias. A standard regression is usually able to pick up the correct
sign of peer effects in this specific setup, but cannot recover the structural
coefficient. The SAR MLE broadly follows the same lines.

on the average number of activated friends. Notice, however, that the model using sums has
an equivalent representation using averages when groups have the same size: it amounts
to scaling δ by group size.
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Table 1: Simulations with ’classrooms’ network structure

Bias Standard deviation RMSE
nb δ Reg SAR Exp Reg SAR Exp Reg SAR Exp

5

-0.5
δ̂ 0.39 0.43 0.03 0.04 0.03 0.12 0.39 0.43 0.13

β̂1 −0.70 −0.37 0.00 0.02 0.03 0.09 0.70 0.38 0.09

β̂2 −0.36 −0.19 0.00 0.01 0.02 0.05 0.36 0.20 0.05

0
δ̂ −0.02 −0.01 0.00 0.08 0.04 0.10 0.08 0.04 0.10

β̂1 −0.70 −0.37 0.00 0.02 0.03 0.09 0.70 0.37 0.09

β̂2 −0.36 −0.20 0.00 0.01 0.02 0.05 0.36 0.20 0.05

0.5
δ̂ −0.35 −0.41 −0.01 0.07 0.04 0.09 0.36 0.42 0.09

β̂1 −0.71 −0.37 0.00 0.02 0.03 0.09 0.71 0.37 0.09

β̂2 −0.36 −0.21 0.00 0.01 0.02 0.05 0.36 0.21 0.05

10

-0.5
δ̂ 0.32 0.41 0.00 0.14 0.07 0.13 0.35 0.41 0.13

β̂1 −0.69 −0.37 0.00 0.02 0.04 0.09 0.69 0.38 0.09

β̂2 −0.35 −0.19 0.00 0.01 0.02 0.05 0.35 0.20 0.05

0
δ̂ −0.01 −0.01 0.00 0.12 0.07 0.11 0.12 0.07 0.11

β̂1 −0.70 −0.37 0.00 0.02 0.04 0.09 0.70 0.37 0.09

β̂2 −0.36 −0.20 0.00 0.01 0.02 0.05 0.36 0.20 0.05

0.5
δ̂ −0.37 −0.42 0.00 0.10 0.06 0.10 0.38 0.43 0.10

β̂1 −0.71 −0.37 0.01 0.02 0.04 0.08 0.71 0.37 0.08

β̂2 −0.36 −0.21 0.01 0.01 0.02 0.06 0.36 0.21 0.06

20

-0.5
δ̂ 0.30 0.40 0.00 0.21 0.10 0.13 0.36 0.41 0.13

β̂1 −0.70 −0.37 0.01 0.02 0.06 0.08 0.70 0.37 0.09

β̂2 −0.36 −0.20 0.01 0.01 0.02 0.05 0.36 0.20 0.05

0
δ̂ −0.06 −0.03 −0.01 0.18 0.10 0.11 0.19 0.10 0.11

β̂1 −0.70 −0.36 0.00 0.02 0.06 0.08 0.70 0.36 0.08

β̂2 −0.36 −0.20 0.00 0.01 0.02 0.05 0.36 0.20 0.05

0.5
δ̂ −0.38 −0.42 −0.02 0.15 0.09 0.10 0.40 0.43 0.11

β̂1 −0.71 −0.36 0.07 0.02 0.06 0.18 0.71 0.37 0.19

β̂2 −0.36 −0.21 0.03 0.01 0.02 0.08 0.36 0.21 0.09
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I now consider another network structure, in which individuals within
groups decide whether to make a connection based on their characteristics.
Specifically, I consider a homophilic link formation process in which individ-
ual match according to their similarities: Wij = 1 iff

‖X1i−X1j‖+‖X2i−X2j‖
2

<
ηij), where the collection of ηij = ηji forms an array of independent uniform
random variables. Group sizes are 5, 20, or a larger group of 100 and the
sample size is gain N = 1000.

The results are displayed in the next table.

Table 2: Homophilic

Bias Standard deviation RMSE
nb δ Reg SAR Exp Reg SAR Exp Reg SAR Exp

5

-0.5
δ̂ 0.39 0.42 0.03 0.04 0.03 0.13 0.39 0.43 0.13

β̂1 −0.70 −0.38 −0.01 0.02 0.02 0.09 0.70 0.38 0.09

β̂2 −0.36 −0.20 0.00 0.01 0.02 0.05 0.36 0.20 0.05

0
δ̂ 0.00 0.00 −0.02 0.04 0.03 0.11 0.04 0.03 0.11

β̂1 −0.69 −0.38 0.02 0.02 0.02 0.09 0.69 0.38 0.09

β̂2 −0.36 −0.19 0.01 0.01 0.02 0.05 0.36 0.20 0.05

0.5
δ̂ −0.38 −0.41 −0.03 0.03 0.02 0.10 0.38 0.41 0.11

β̂1 −0.71 −0.38 0.02 0.02 0.02 0.08 0.71 0.38 0.08

β̂2 −0.36 −0.20 0.00 0.01 0.02 0.05 0.36 0.21 0.05

10

-0.5
δ̂ 0.41 0.44 0.03 0.05 0.03 0.12 0.41 0.44 0.12

β̂1 −0.69 −0.39 0.00 0.02 0.02 0.09 0.70 0.39 0.09

β̂2 −0.35 −0.20 0.00 0.01 0.02 0.05 0.35 0.20 0.05

0
δ̂ 0.00 0.00 −0.02 0.04 0.03 0.10 0.04 0.03 0.10

β̂1 −0.70 −0.38 0.00 0.02 0.02 0.08 0.70 0.38 0.08

β̂2 −0.36 −0.20 0.00 0.01 0.02 0.05 0.36 0.20 0.05

0.5
δ̂ −0.39 −0.42 −0.05 0.05 0.03 0.10 0.39 0.43 0.11

β̂1 −0.71 −0.37 0.01 0.02 0.02 0.08 0.71 0.37 0.08

β̂2 −0.36 −0.21 0.00 0.01 0.02 0.05 0.36 0.21 0.05

Although the performance of OLS or SAR-MLE in terms of bias and
RMSE in the absence of peer effects (δ = 0) suggests that these estimators
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may successfully detect the absence of social influence, notice that estimates
are generally attenuated compared to the structural parameter and that de-
cisions will eventually be based on tests or confidence intervals. As a result,
the coverage performance of the confidence intervals may be a more relevant
benchmark and will be analyzed in the next subsection.

Interestingly, OLS and SAR-MLE feature attenuation bias with respect
to the structural parameter. As a result, they may seem to perform bet-
ter in terms of RMSE in the absence of peer effect. In practice, however,
what matters is the test for the presence of peer effect or, equivalently, the
resulting confidence intervals. In the next subsection, I explore the cover-
age performance of the three estimators to assess their ability to (correctly)
not reject a null hypothesis of no peer effects in both correctly specified and
misspecified models.
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4.2 Mispecifications type of results

Peer effect studies are often subject to criticism due to modeling (Manski,
1993; Angrist, 2014) and empirical (Angrist, 2014) concerns. While it is
hoped that the framework developed in this paper alleviates modeling con-
cerns - in particular, by avoiding reflection problems -, it is of interest to
evaluate the behavior of the estimator under frequent empirical difficulties:
missing or omitted covariates, group level heterogeneity, or measurement er-
ror.

I focus here on the peer effect parameter δ, which will typically the pa-
rameter of interest.

Because OLS and SAR cannot identify the structural coefficient but could
still detect the presence of peer effects, it is of interest to look at the coverage
performance. I look at the frequency at which a 95% confidence interval
contains 0, indicating the absence of peer effects, under the generating process
in which peer effects are indeed absent (δ = 0).

Table 3 reports the coverage of a 95% confidence interval under the ho-
mophilic network structure when the researcher (i) observes both covari-
ates, (ii) observes only the first covariate, (iii) observes a mismeasured (with
(N (0; 0.25)) error) first covariate, and (iv)/(v)/(vi) there is (uniform on
[−1; 0]) group heterogeneity (added to the argument of the exponential) in
the (i)/(ii)/(iii) scenario.

The coverage performance of the estimator developed in the paper is far
better than that of OLS and SAR-MLE. Although the most serious issues
(lack of covariate and measurement error combined with heterogeneity issues)
can lead to severe size distortions, spurious peer effects are unlikely under
more standard scenarios. The test for the presence of peer effect is adequately
sized in the case of correct specification and is moderately distorted under
measurement error or group heterogeneity.

Both OLS and SAR-MLE have a tendency to spuriously detect peer ef-
fects at a rate higher than the pre-specified level, even with homogeneous
groups and adequate covariates. Any empirical difficulty such as measure-
ment error, unobserved covariate, or heterogeneity leads by itself to a high
risk of unwarranted rejection of the null of no peer effects, echoing critiques
in Angrist (2014).
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Table 3: Coverage analysis with potential misspecification

Coverage
nb δ Reg SAR Exp

5 0

Size 0.90 0.79 0.95
Size 0.72 0.62 0.90
Size 0.69 0.55 0.90
Size 0.83 0.70 0.89
Size 0.62 0.47 0.71
Size 0.56 0.42 0.67

Table 4: Coverage performance of a 95% confidence interval from OLS with
clustered standard errors, SAR-MLE, and maximum of likelihood on latent
exponential processes.
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