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Abstract

I propose an approach to Independent Component Analysis (ICA)
with square mixing matrix that does not require existence of higher-
order moments or parametric restrictions, handles estimated sensors ex-
plicitely, and can achieve asymptotic efficiency. The estimator is shown
to be consistent and asymptotically normal, with an asymptotic vari-
ance that can be consistently estimated. The optimal version of the
estimator leverages results from the continuum Generalized Method of
Moments of Carrasco and Florens (2000), which provides a global speci-
fication test which is valuable in many ICA applications. The method’s
effectiveness is illustrated through simulations, where the estimator out-
performs efficient GMM and fastICA, and an application to the estima-
tion of Structural Vector Autoregressions (SVAR), a popular model in
the econometric time series literature.

Keywords: Independent Component Analysis, Structural VAR,
characteristic function, continuum GMM.

1 Introduction

Independent Component Analysis (ICA; Comon (1994); Eriksson and Koivunen
(2003b)) is a popular method which finds applications in fields as diverse as
signal processing, machine learning, or structural Vector Autoregressions.
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The common model posits that an observed vector (of ’sensors’) at time
t, ηt, is generated through ηt = Θεt where εt has independent entries and
Θ is a square, full-rank matrix. εt, sometimes referred as the ’sources’, is a
vector containing the latent factors that affects the system through the mixing
matrix, Θ.

Various methods have been proposed to uncover the unmixing matrix, Θ−1.
Early methods typically attempted to maximize a measure of non-normality or
use maximum entropy, often making use of third- and fourth-order moments.
A popular and fast method based on non-Gaussianity is the fastICA algorithm
(Oja and Yuan, 2006). A list of algorithms and applications can be found in
in Hyvärinen, Karhunen and Oja (2001).

A broad estimation strategy is to rely on maximum likelihood or related
methods. Many papers (Bach and Jordan, 2002; Samarov, Tsybakov et al.,
2004; Chen, Bickel et al., 2006; Ilmonen, Paindaveine et al., 2011; Samworth,
Yuan et al., 2012; Ablin, Cardoso and Gramfort, 2018) have assumed para-
metric, smooth, or log-concave densities to devise an estimation strategy for
the unmixing matrix. Nevertheless, misspecification bias is a major concern
as family of distribution is typically unknown and assumptions of smoothness,
unimodality, or absence of atoms are not innocuous in applications. In addi-
tion, many of these approaches require a choice of tuning parameter or are not
straightforward to implement.

I propose a nonparametric approach to estimate the unmixing matrix based
on the empirical characteristic function that does not require existence of
higher-order moments or restrictions on Θ’s entries and can achieve asymptotic
efficiency. I also explicitely allow ηt to be (consistently) estimated rather than
directly observed to account for vanishing noise or an estimation step, as hap-
pens for instance in my application where the ICA system is derived through
a first-step regression. Perhaps surprisingly, the approach avoids an explicit
nonparametric estimation step and entails no bias-variance trade-off. The
main drawback is computational cost, which may limit applicability to high-
dimensional applications, at least with current capabilities. High-dimensional
applications can be handled with sub-optimal but simpler weighting functions,
or by turning to algorithms suited for large dimensions.

A related approach is Eriksson and Koivunen (2003a) (see also Chen and
Bickel (2005) for the asymptotic properties), who start from the same identify-
ing equation function to derive an estimator but work with the characteristic
functions rather than its logarithm. Although this approach shares some of
the benefits (such as the absence of parametric restrictions or higher-order
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moment assumptions), the approach developed in this paper derives straight-
forward asymptotics, allows for optimal weighting, and delivers a global test
of the ICA system’s validity.

2 Identification of Θ

Identification of systems featuring unknown linear combinations of unobserved
independent variables has been extensively discussed in various places and ex-
tended to general setups (Reiersøl, 1950; Comon, 1994; Bonhomme and Robin,
2009; Ben-Moshe, 2016). Eriksson and Koivunen (2003b) provide a general
proof of identification of unknown linear transformation of unobservables that
applies to a broad range of ICA systems. Their Theorem 3.1 reads as follows:

If an observable vector X is generated through X = AS where A is a p×m
constant matrix and S is a vector of independent real-valued variable, then A
is identified if (i) no variable is S is normally distributed or (ii) A is of full
column rank and at most one variable in S is normally distributed.

Eriksson and Koivunen (2003b) also establish that condition (ii) is sufficient
to identify the distribution of S. In the ’square’ ICA framework, Θ is a full
rank-matrix so that, provided at most one source is normal, identification is
achieved.

In this case, the result can also be derived by noting that two observation-
ally equivalent systems (Θ, ε) and (Θ∗, ε∗) must satisfy Θε =d Θ∗ε∗ and thus
ε =d Θ−1Θ∗ε∗, where =d denotes equality in distribution. But if ε is to have
independent entries, Darmois–Skitovich theorem (Darmois, 1953; Skitovitch,
1953) requires trivial linear combinations in the absence of normality. As a
result, Θ−1Θ∗ must be a (possibly scaled) permutation matrix.

Theorem 2.1 (Identification). Consider ηt = Θεt where ηt is observed or
consistently estimated. Θ is identified up to column scale and permutations
if (i) it is invertible, and (ii) the vector εt is ergodic, strictly stationary, and
contains independent random variables among which at most one is normal.

3 Estimation

This section introduces the approach to the estimation of ICA systems.

I will make use of the following notation. I define ~s to be a 1 × n row
vector. ϕX denotes the characteristic function of the random vector X, i.e.
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ϕX(~s)
def
= E[ei~sx]. The jth column of Θ is an n × 1 vector denoted by Θ·j; the

jth row of Θ is a 1× n vector denoted by Θj·.

3.1 Estimation based on empirical characteristic func-
tions

By independence of sources, the observed variables’ distribution is related to
the distribution of their unobserved counterparts through

ϕηt(~s) =
n∏
j=1

ϕεtj(~sΘ·j) (1)

while each source’s characteristic function can be recovered from that of the
sensors via

ϕεtj(s) = ϕηt(sΘ
−1
j· ) (2)

where Θ−1
j· is the j-th row in Θ−1.

A functional equation for the characteristic function of η in terms of the
unknown Θ can be obtained using the last two expressions. First, define
Pj

def
= Θ·jΘ

−1
j· whose immediate properties are PjPk = 1j=kPj ∀j, k,

∑n
j=1 Pj =

In =
∑n

j=1 P
′
j , and rank(Pj) = 1.

In addition, the collection of Pj is isomorphic to Θ once the normalization
on Θ is done (for instance, rows of Θ−1 are directly read in the corresponding
row of each Pj when Θ has a unit diagonal). Next, substituting (2) into (1)
yields an expression which implicitly relates the characteristic function of η to
Θ without involving the distribution of the sources:

ϕηt(~s) =
n∏
j=1

ϕηt(~sPj) (3)

I propose to use the previous equation to form an estimator of Θ. As it
appears from the consistency proof, it will be necessary to exclude some se-
quences toward degenerate matrices if ηt is to remain estimated. I make use of
the following concept, which strengthens slightly the invertibility assumption
by bounding the matrix an ε away from degeneracy.

Definition 3.1 (ε-invertibility). Θ is ε-invertible if there exists ε > 0 such
that any two columns of Θ differ by an angle of at least ε.
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Equivalently, one might bound the lowest (absolute) eigenvalue away from
0. Since identification is obtained only up to scale and column permutations,
a normalization and an order is needed. From now on, I use a unit norm
normalization for each column of Θ and denote the corresponding compact
parameter space by Θ.

The unit norm constraint can be explicited through polar coordinates. For

instance, in the 2× 2 case, Θ =

(
cos(γ1) cos(γ2)
sin(γ1) sin(γ2)

)
, where γ1, γ2 lie between

0 and π1. As a result, the properties can be discussed in terms of γ, with
Θ = τ(γ) for some function τ . In particular, the estimator is defined through
an interior solution in the γ-space.

Consider a compact neighborhood Ω of the origin on which the character-
istic function does not vanish. Then equation (3) can be written in log-form.

Let fT (~s, γ)
def
=
∑n

j=0 aj ln
(

1
T

∑T
t=1 e

i~sPjηt
)

with aj = (−1)1j>0 and P0 = I,

then consider the integrated quadratic form with weighting matrix WT :

QT (γ)
def
=

1

2

∫
Ω

(
<fT (~s, γ) =fT (~s, γ)

)
WT (~s)

(
<fT (~s, γ)
=fT (~s, γ)

)
d~s (4)

A simple choice of W is the identity matrix, delivering the integrated mod-
ulus of fT as a sample criterion. Alternatively, simple weighting schemes can
facilitate integration as in Eriksson and Koivunen (2003a). Nevertheless, more
refined choices of W improve efficiency by deviating from the identity (as the
real and imaginary part may be estimated with different accuracy) and depen-
dence on ~s (as the characteristic function is more accurately estimated near
the origin and estimates are correlated).

The proposed estimator is in all cases consistent, as summarized by the
following Theorem which is proven in the appendix.

Theorem 3.1 (Consistency). The estimator γ̂
def
= arg minγ QT (γ) is consistent

for γ0 if (i) Θ = Θ(γ) is ε-invertible, (ii) the vector of sources εt is ergodic,
strictly stationary, and contains independent random variables among which
at most one is normal, (iii) there is a (root T ) consistent estimator, η̂t, of ηt,
(iv) Ω is a compact neighborhood of the origin which retains identification2,
and (v) WT converges uniformly to a positive definite matrix W .

1Since Θ is only identified up to columns permutations, it is convenient to fix their order.
Here, this can be done easily by setting, say, γ1 < γ2, with straightforward adaptations to
higher-dimensional settings by lexicographic ordering.

2There is a possibility of losing point identification by not using the information from the
characteristic function over the whole space. Notice however that the vicinity of the origin
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3.2 Asymptotic Normality

I now turn to the derivation of the asymptotic distribution of the estimator.

In the following, the argument ~s is left implicit for notational convenience,
though all integrals are computed with respect to it. I also use f to denote
the population counterpart of fT .

Noting that differentiability of characteristic functions is ensured by exis-
tence of moments, we have the following theorem.

Theorem 3.2 (Asymptotic Normality). γ̂ is asymptotically normally dis-
tributed. Specifically, if (i) Θ = Θ(γ) is ε-invertible, (ii) the vector of sources εt
is iid and contains independent random variables with second moments among
which at most one is normal, (iii) ηt is (root T ) consistently estimated, (iv)
Ω is a compact neighborhood of the origin which retains identification, and (v)
WT converges uniformly to a positive definite matrix W .

Then,
√
T (γ̂ − γ0)→d N(0;BV B′) where

B
def
=

[∫
Ω

(
<∂f
∂γ

(γ0) =(∂f
∂γ

(γ0)
)
W

(
(<∂f

∂γ
(γ0))

′

(=∂f
∂γ

(γ0))
′

)]−1

(5)

and

V
def
=

∫
Ω

∫
Ω

(
<∂f
∂γ

(γ0, ~u) =∂f
∂γ

(γ0, ~u)
)
W (~u)K(~u,~v)W (~v)′

(
(<∂f

∂γ
(γ0, ~v))′

(=∂f
∂γ

(γ0, ~v))′

)
(6)

where K(~u,~v) is the covariance function for the real and imaginary parts of
the limiting process of fT .

As usual, the iid assumption can be weakened to ergodicity and strict
stationarity. This is done with a natural adaptation of the proof, noting that
results about convergence of characteristic functions have generalizations to
ergodic, stationary settings (Feuerverger, 1990). The main difference is that
two corrections may apply to the asymptotic variance. First, the use of a long-
run variance might be warranted since uncorrelatedness of sensors does not
translate to that of their empirical characteristic functions. Second, estimation
of ηt must be accounted for since its disappearance hinges on the vanishing

often contains crucial information, for instance knowledge of moments when they exist, and
identification can be based on the first four. Hence, it is be reasonable to assume an Ω
retaining identification of γ exists though marginal distributions are not always determined
by the characteristic functions on a compact.
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of the term ∂f(γ0,ηt(β))
∂β

(β̂ − β) (following notation in the proof), which relied
crucially on independence.

Finally, since Θ is usually the parametrization of interest, the Delta method
can be applied and asymptotic normality ensues for the corresponding estima-
tor with the same asymptotic variance scaled by ∂γτ .

3.3 Estimation of asymptotic variance

Due to the asymptotic linear representation shown while establishing asymp-
totic normality, the variance can be approximated via bootstrap. Alterna-
tively, the asymptotic variance can be consistently estimated. Indeed, most
terms appearing in its expression have a natural estimator based on the use of
γ̂ in place of γ0 and the use of the sample counterparts of population quantities.
We have

∂f

∂γ′
= −

n∑
j=1

∂ ln(E[ei~sPjηt ])

∂γ′
= −

n∑
j=1

E[ei~sPjηt(η
′
t ⊗ ~s)

∂ vec(Pj)

∂γ′
]

E[ei~sPjηt ]
(7)

As an illustration of the differentiated term, consider the two-dimensional
case:

Θ =

(
cos(γ1) cos(γ2)
sin(γ1) sin(γ2)

)
(8)

Tedious but straightforward algebra yields

Θ−1 =
1

sin(γ2 − γ1)

(
sin(γ2) − cos(γ2)
− sin(γ1) cos(γ1)

)
(9)

P1 =
1

sin(γ2 − γ1)

(
cos(γ1) sin(γ2) − cos(γ1) cos(γ2)
sin(γ1) sin(γ2) − sin(γ1) cos(γ2)

)
(10)

P2 =
1

sin(γ2 − γ1)

(
− sin(γ1) cos(γ2) cos(γ1) cos(γ2)
− sin(γ1) sin(γ2) cos(γ1) sin(γ2)

)
(11)

∂ vec(P1)

∂γ′
=

1

sin2(γ2 − γ1)


sin(γ2) cos(γ2) − sin(γ1) cos(γ1)

sin2(γ2) − sin2(γ1)
− cos2(γ2) cos2(γ1)

− sin(γ2) cos(γ2) sin(γ1) cos(γ1)

 (12)

∂ vec(P2)

∂γ′
=
∂ vec(I − P1)

∂γ′
= −∂ vec(P1)

∂γ′
(13)
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Hence, replacing expectations by sample averages and using consistent es-
timators in place of unknown parameters delivers a consistent estimate of ∂f

∂γ′
.

It remains to consider the central term in more detail. The (centered)
log empirical characteristic function converges to a mean zero process with
covariance function ϕ(~u+~v)

ϕ(~u)ϕ(~v)
−1 and, since ln(ϕ(~s)) = ln(ϕ(−~s)), the covariance

functions is enough to characterize the complex process.

With ϕ(~s)
def
=


ϕη(~s)
ϕη(P1~s)
...

ϕη(Pn~s)

 and A
def
=
(
a0 a1 ... an

)
, consider

Cov

((
<f(γ0, ~u)
=f(γ0, ~u)

)
;

(
<f(γ0, ~v)
=f(γ0, , ~v)

))
= (I⊗A)Cov

((
<ϕ(~u)
=ϕ(~u)

)
;

(
<ϕ(~v)
=ϕ(~v)

))
(I⊗A′)

Letting ~uj
def
= Pj~u, properties of the complex-normal distribution yield the

relationships

Cov(<ϕ(~uj);<ϕ(~vk)) =
1

2
<
(

ϕ(~uj − ~vk)
ϕ(~uj)ϕ(−~vk)

+
ϕ(~uj + ~vk)

ϕ(~uj)ϕ(~vk)
− 2

)
(14)

Cov(<ϕ(~uj);=ϕ(~vk)) =
1

2
=
(
− ϕ(~uj − ~vk)
ϕ(~uj)ϕ(−~vk)

+
ϕ(~uj + ~vk)

ϕ(~uj)ϕ(~vk)

)
(15)

Cov(=ϕ(~uj);<ϕ(~vk)) =
1

2
=
(

ϕ(~uj − ~vk)
ϕ(~uj)ϕ(−~vk)

+
ϕ(~uj + ~vk)

ϕ(~uj)ϕ(~vk)
− 2

)
(16)

Cov(=ϕ(~uj);=ϕ(~vk)) =
1

2
<
(

ϕ(~uj − ~vk)
ϕ(~uj)ϕ(−~vk)

− ϕ(~uj + ~vk)

ϕ(~uj)ϕ(~vk)

)
(17)

Hence, the use of empirical characteristic functions as an estimate of their
population counterparts allows the construction of consistent estimator of the
central term of the asymptotic variance.

4 Efficient estimator

4.1 Optimal objective function

Finding the optimal weighting matrix is not straightforward and actually re-
quires a more subtle general form of the objective function. In analogy with the
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formation of a quadratic form for estimating equations or Generalized Method
of Moments (GMM; Hansen (1982)) in the continuous realm, consider

QE
T (γ) =

∫
Ω

∫
Ω

(
<fT (~s, γ) =fT (~s, γ)

)
WT (~s, ~r)

(
<fT (~r, γ)
=fT (~r, γ)

)
d~rd~s (18)

Now W (~s, ~r) possesses the necessary additional degree of freedom to hope
for cancellation between A and V . Solving for the optimal weighting scheme
will later allow to consider the question of the optimal Ω.

This expression is reminiscent of the extension of GMM to a continuum
of moment conditions developed by Carrasco and Florens (2000). While
<fT (~s, γ) are =fT (~s, γ) are not per se sample moments, they do have a zero
asymptotic counterpart and the results of Carrasco and Florens (2000) can be
adapted to the present framework.

Specifically, denoting real and imaginary parts of fT by gj, j = 1, 2, their
objective function ‖Bn(fT (γ))‖ matches QE

T when Bn is an integral operator
(Bng)(~s) =

(∑2
l=1

∫
Ω
bjl(~s, ~r)gl(~r)d~r

)
j=1,2

that generates a weighting matrix

through W jk
T (~s, ~r) =

∑
l,l′=1,2

∫
Ω
bjl(~u,~s)bjl(~u, ~r)d~u.

As Carrasco and Florens (2000) establish, efficient estimation requires in-
verting a covariance operator C : h →

∫
K(~t, ~s)h(~s)d~s which is not possi-

ble on the whole reference space. They propose a regularized sample version
CαT
T where αT is a smoothing parameter that disturbs the eigenvalues of C.

The choice of αT has been discussed in subsequent papers, see Carrasco and
Kotchoni (2017) and Amengual, Carrasco and Sentana (2020).

Eventually, the optimal estimator minimizes

T∑
m=1

µm;T

µ2
m;T + αT

(< ϕm;T , fT >)2 (19)

where µm;T and ϕm;T are the eigenvalues and eigenfunctions of CT . More-
over, under the assumptions of Theorem 3.2 and provided αT → 0 while
α3
TT → ∞, the expected simplification of the asymptotic variance occurs so

that the asymptotic distribution becomes

√
T (γ̂ − γ0)→d N

(
0;

∣∣∣∣∣∣∣∣∂f∂γ
∣∣∣∣∣∣∣∣−2

C

)
=d N (0;B) (20)

where the weighting matrix to compute B is now based on the inverted
covariance operator.
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Though the more sophisticated objective function implies a more compu-
tationally intensive procedure due to integration, the estimator is in practice
obtained by minimizing equation (19) and the main computational burden
arises from evaluating a matrix and computing its eigen-decomposition, which
can be alleviated by the use of GPU and computational techniques (see, e.g.,
Chen and Jiang (2017)). Furthermore, using the efficient form of the estimator
carries significant benefits. It removes the need to specify an arbitrary form
of the weighting matrix and furthers efficiency. In particular, Carrasco and
Florens (2000) argue that using a continuum of moment conditions may allow
to close the efficiency gap between GMM and MLE.

Fully exploiting the distributional information implies using the full extent
of zero conditions, i.e. asymptotically integrating over the whole space. This is
backed up by the simplified form of the asymptotic variance, which decreases as
Ω expands. As optimal weighting necessarily cancels infinite variances brought
by the zeros of f , arbitrarily expanding the integration region becomes pos-
sible, though Carrasco and Florens (2000)’s assumption that E[‖f‖4] < ∞,
required to derive the asymptotic distribution of the efficient estimator, is no
longer a trivial assumption in presence of zeros3 and unbounded space.

Lastly, the consistency proof suggests the rate of expansion of the diameter
of Ω must be lower than root T . Investigating the optimal sequence of Ω and
the trade-offs brought by finite sample considerations would require a deep
analysis beyond the scope of this paper.

5 Implementation

Now, I derive the eigenfunctions and eigenvalues in details. Consider the
integral operator K̂ applied to g : Rn → R2

(Kg)(~t) =

∫
Ω

(
Cov(<fT (~s),<fT (~t))g1(~s) + Cov(=fT (~s),<fT (~t))g2(~s)

Cov(<fT (~s),=fT (~t))g1(~s) + Cov(=fT (~s),=fT (~t))g1(~s)

)
d~s

3Also note that assumptions excluding zeros are common, e.g., literature on nonpara-
metric deconvolution (see Schennach (2004) and references therein).
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Doing the algebra on its estimated counterpart yields

(K̂g)(~t) =
1

T

T∑
t=1

<∑n
k=0 ak

(
eitkητ

ϕ̂(tk)
− 1
)

=
∑n

k=0 ak

(
eitkητ

ϕ̂(tk)
− 1
)

×

[∫
Ω

<
n∑
j=0

aj

(
ei~sjητ

ϕ̂(~sj)
− 1

)
g1(~s) d~s+ =

n∑
j=0

aj

(
ei~sjητ

ϕ̂(~sj)
− 1

)
g2(~s) d~s

]

This implies that the eigenfunctions g1 and g2 take the form

g1(~t) =
1

T

T∑
τ=1

cτ<
n∑
k=0

ak

(
ei~tkητ

ϕ̂(~tk)
− 1

)
(21)

and

g2(~t) =
1

T

T∑
τ=1

cτ=
n∑
k=0

ak

(
ei~tkητ

ϕ̂(~tk)
− 1

)
(22)

where the coefficients, {cmτ , τ = 1, . . . , T} for m = 1, . . . , T , form the T eigen-
vectors of the matrix M with elements

Mτ̃ τ = <
∫

Ω

n∑
j=0

aj

(
ei~sjητ

1
T

∑T
t=1 e

i~sPjηt
− 1

)
n∑
k=0

ak

(
ei~skητ̃

1
T

∑T
t=1 e

i~sPkηt
− 1

)
d~s

(23)
The associated eigenvalues correspond to Tµm;T .

The scalar products in computing the objective function then reads

< fT , ϕm;T > =

∫
Ω

(
<
∑n

j=0 aj ln
(

1
T

∑T
t=1 e

i~sPjηt
)
=
∑n

j=0 aj ln
(

1
T

∑T
t=1 e

i~sPjηt
))

 1
T

∑T
τ=1 c

m
τ <
∑n

k=0 ak

(
ei
~tkητ

1
T

∑T
t=1 e

i~sPkηt
− 1
)

1
T

∑T
τ=1 c

m
τ =
∑n

k=0 ak

(
ei
~tkητ

1
T

∑T
t=1 e

i~sPkηt
− 1
) d~s

=
1

T

T∑
τ=1

cmτ <
∫

Ω

n∑
j=0

aj ln

(
1

T

T∑
t=1

ei~sPjηt

)
n∑
k=0

ak

(
ei~tkητ

1
T

∑T
t=1 e

i~sPkηt
− 1

)
d~s

5.1 Tests

Asymptotic normality provides the basis for usual confidence intervals and
tests. Moreover, an advantage of the analogy with GMM is the potential for
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a specification test, in the spirit of over-identifying restrictions. As detailed in
Carrasco and Florens (2000), such a test can be constructed on the basis of

||
√
TfT ||2CαTT −

∑T
j=1

µ2j;T
µ2j;T+αT√

2
∑T

j=1

µ4j;T
(µ2j;T+αT )2

→d N(0; 1) (24)

provided αT
∑T

j=1

µ4j;T
(µ2j;T+αT )2

→∞ and the assumptions for asymptotic nor-

mality of the efficient estimator hold.

Such a test is valuable when working with ICA systems as it provides a
feedback about the validity of the entire structure.

6 Simulations

I generate samples of ηt through equation ηt = Θεt with various distributions
for the epsilons and a sample size of T = 150. I compare the performance in
recovering the lag polynomial of the efficient estimator of Section 4 to that of
efficient GMM based on moment conditions (i.e. deriving identifying equations
implied by independence under the assumptions that moments up to order 4
exists, see e.g., Guay and Normandin (2018)) and fastICA (Oja and Yuan,
2006). In the forthcoming tables, the corresponding estimators are denoted
by log-cf, GMM, and fICA, respectively.

I consider the following distributions for the sources: student with 3 degrees
of freedom, uniform on [-1;1], Binomial(20, 0.3), and Gamma(5, 1/7). All
distributions are centered as to have mean zero. These distributions account
for a variety of cases such as fat tails, skewness, or presence of atoms.

Consider first a student distribution with 3 degrees of freedom. In this
case, the student distribution exhibits fat tails and moments higher than 2 do
not exist, endangering identification strategies based on higher moments.

It appears the estimator based on log-empirical characteristic function con-
siderably outperforms both efficient GMM and fastICA estimators when the
sources are student distributed. The gains come mostly from a lower standard
deviation, though there is some bias reduction especially compared to fastICA.

Now, I turn to uniform and binomial distributions. Both distribution have
all their moments but one is continuous and symmetric while the other is
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Table 1: Student distribution ν = 3

Bias Standard deviation RMSE

Θ·1 log-cf GMM fICA log-cf GMM fICA log-cf GMM fICA
0.71 −0.05 −0.02 −0.31 0.17 0.22 0.55 0.17 0.22 0.63
0.71 0.01 −0.07 0.01 0.13 0.28 0.17 0.14 0.29 0.17
Θ·2 log-cf GMM fICA log-cf GMM fICA log-cf GMM fICA
−0.50 −0.03 0.03 0.11 0.17 0.28 0.55 0.18 0.28 0.56
0.87 −0.04 −0.05 −0.15 0.10 0.19 0.17 0.11 0.20 0.22

discrete and skewed. Both efficient GMM and the characteristic-function based
estimator outperform fastICA for the uniform distribution. In the binomial
case, the characteristic function based estimator again fares better than both
efficient GMM and fastICA, with a considerable reduction in mean square
error originating from lower standard deviations.

Table 2: Uniform distribution

Bias Standard deviation RMSE

Θ·1 log-cf GMM fICA log-cf GMM fICA log-cf GMM fICA
0.71 −0.04 −0.10 −0.28 0.14 0.16 0.57 0.15 0.19 0.63
0.71 0.01 0.06 −0.01 0.12 0.11 0.12 0.12 0.13 0.12
Θ·2 log-cf GMM fICA log-cf GMM fICA log-cf GMM fICA
−0.50 −0.01 −0.06 0.10 0.15 0.20 0.58 0.15 0.21 0.59
0.87 −0.02 −0.07 −0.17 0.08 0.11 0.12 0.08 0.13 0.21

Finally, the last tables show more contrasted results. In the case of a
gamma distribution, log-cf and fICA estimators exhibit similar performance
in terms of RMSE and tend to be outperformed by efficient GMM. The char-
acteristic function based estimator occasionally displays a greater bias, which
reduces its performance with these distributions, at least for some parameters.
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Table 3: Binomial distribution n = 20, p = 0.3

Bias Standard deviation RMSE

Θ·1 log-cf GMM fICA log-cf GMM fICA log-cf GMM fICA
0.71 −0.02 −0.06 −0.30 0.13 0.27 0.51 0.13 0.28 0.60
0.71 0.01 −0.07 −0.01 0.14 0.30 0.31 0.14 0.31 0.31
Θ·2 log-cf GMM fICA log-cf GMM fICA log-cf GMM fICA
−0.50 −0.01 0.00 0.12 0.18 0.32 0.53 0.18 0.32 0.54
0.87 −0.02 −0.11 −0.17 0.08 0.27 0.31 0.08 0.29 0.35

Table 4: Gamma distribution α = 5, β = 1/7

Bias Standard deviation RMSE

Θ·1 log-cf GMM fICA log-cf GMM fICA log-cf GMM fICA
0.71 −0.20 −0.14 −0.29 0.56 0.34 0.53 0.59 0.36 0.61
0.71 −0.15 −0.02 −0.01 0.35 0.30 0.25 0.39 0.31 0.25
Θ·2 log-cf GMM fICA log-cf GMM fICA log-cf GMM fICA
−0.50 0.02 −0.03 0.11 0.52 0.43 0.54 0.52 0.43 0.55
0.87 −0.23 −0.16 −0.19 0.32 0.36 0.25 0.40 0.42 0.30

7 Application to SVAR

7.1 Structural Vector Autoregression

Structural Vector Autoregressions (SVAR) have attracted a lot of interest in
time series econometrics since the pioneering work of Sims (1980). The stan-
dard model postulates that some observed state of the economy characterized
by a vector of n variables, Yt, is related to unobserved (stationary) shocks
(e.g., monetary or oil shocks) through

Yt = Θ(L)εt (25)

where Θ(L) is an unknown lag polynomial that represents the impulse
response function4. Θ(L) describes the transmission mechanism of shocks to

4Similarly to ICA systems, shocks as well as their effects on the system are unobserved
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the economy and a subset of its column typically constitutes parameters of
interest.

The first step towards estimation of Θ(L) is usually to perform the vector
autoregression A(L)Yt = ηt to recover estimates of the innovation vector, ηt.
The fundamentalness assumption states that the span of the shocks and in-
novations are identical and thus ηt = Θεt for some invertible matrix Θ. It is
well-known in the literature (see for instance Forni, Gambetti and Sala (2019))
that Θ corresponds to the first term in the lag polynomial Θ(L).

Provided one can identify Θ, the whole lag polynomial is recovered as
A(L)−1Θ. As a result, the problem is reduced to the system ηt = Θεt. While
standard SVAR only assumes that entries in εt are uncorrelated, second mo-
ments – Ση = ΘΣεΘ

′ – bring too few equations to solve for Θ, even after a
normalization. Various solutions have been proposed, among which short-run
restrictions (Sims, 1980), long-run restrictions (King et al., 1987; Blanchard
and Quah, 1989; Shapiro and Watson, 1988), identification by heteroskedas-
ticity (Rigobon, 2003; Sentana and Fiorentini, 2001; Lewis, 2019), or sign
restrictions (Uhlig, 2005). A good recent reference is Kilian and Lütkepohl
(2017).

Although these restrictions solve the identification problem, assuming a
priori knowledge of numerous (n(n − 1)) shocks’ effects is often an issue, as
the transmission mechanism of shocks to the economy is primarily an empiri-
cal question. Thus, some authors (Siegfried et al., 2002; Gourieroux, Monfort
et al., 2014) have pointed out that ηt = Θεt can be identified by assuming
that εt contains non-Gaussian independent variables, bypassing restrictions
on Θ and introducing ICA methods to the SVAR literature. Many subsequent
studies have followed that road, estimating the model using high-order mo-
ments (Guay and Normandin, 2018; Keweloh, 2019), or pseudo-maximum of
likelihood Gouriéroux, Monfort and Renne (2017). See also related discus-
sions and methods in Moneta et al. (2013); Herwartz (2015); Lanne, Meitz
and Saikkonen (2017).

so that there is a scale indeterminacy: shocks can be arbitrarily re-scaled to get an obser-
vationally equivalent system in which the effect of shocks are inversely re-scaled. Hence a
normalization is typically imposed, for instance the unit variance normalization (each shock
has variance one) or the unit effect normalization (Θjj = 1 ∀j) are popular.
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7.2 Application

I consider a standard SVAR system with monthly data Yt on real economic,
oil price, and stock market growths5 as in Keweloh (2019). The first-step
vector autoregression A(L)Yt = ηt is performed with four lags, as suggested
by Akaike’s information criterion.

The study is interesting to replicate for two reasons. First, as in many
SVAR studies, there might be concerns about the fundamentalness assump-
tion. This could for instance be caused by the presence of additional shocks
(e.g., due to measurement error). Though robustness results against non-
fundamentalness exist (Sims and Zha, 2006; Sims, 2012; Feve and Jidoud,
2012; Beaudry et al., 2015; Forni, Gambetti and Sala, 2019), it is worthwhile
to see if the test detects a problem about the validity of the ICA representation.

Second, shocks might have quite fat tails in practice. For instance, Keweloh
(2019) obtains excess kurtosis for all shocks and find that the shock associated
to economic activity has a kurtosis above 10. Thus an estimator robust to
existence of moment and able to perform accurate estimation in presence of
fat tails may be useful.

The object of interest is here the lag polynomial Θ(L), rather than solely
the unmixing matrix. I report the estimated responses to shock in figure 1
and display bootstraped confidence intervals.

Shocks are here subject to the unit norm normalization, so they have the
same overall variance over the system. Shocks 2 and 3 have similar variance
of about 89, and affect strongly economic activity. The first shock accounts
for less of the disturbances to the economic system (variance of 31) and has a
lower contemporaneous effect on economic activity; it seems to affect the whole
system negatively after a period, but the impact is imprecisely estimated.

The over-identification test’ does not reject the null (p-value 0.21), so that
there is no evidence against the validity of the ICA representation.

5Data comes from the following sources:
https://fred.stlouisfed.org/series/INDPRO (industrial production);
https://www.eia.gov/dnav/pet/hist/LeafHandler.ashx?n=pet&s=r0000˙˙˙˙3&f=m (oil);
https://finance.yahoo.com/quote/%5EGSPC?p=%5EGSPC (SP);
https://fred.stlouisfed.org/series/CPIAUCSL (CPI)
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Figure 1: Plots of Impulse Responses Functions. Each column represents the
1-to-10-months impact of a shock on the S&P (first row), oil price (second
row), and economic activity (third row). Shaded area depicts 90% bootstrap
confidence interval.
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8 Appendix A: proofs

8.1 Theorem 3.1 (Consistency)

Proof. Consistency follows by verifying assumptions of Theorem 2.1 in Newey
and McFadden (1994). The parameter space is compact by construction, iden-
tification is been established under (i), (ii), (iii), and (iv), and the limiting
objective function is continuous by inspection under compactness. It remains
to show uniform convergence in probability.

The empirical characteristic function using a consistent estimator of ηt
converges uniformly in probability:

sup
Θ∈Θ

∣∣∣∣∣ 1

T

T∑
t=1

ei~sPj η̂t − E[ei~sPjηt ]

∣∣∣∣∣ = sup
Θ∈Θ

∣∣∣∣∣ 1

T

T∑
t=1

ei~sPj η̂t − 1

T

T∑
t=1

ei~sPjηt +
1

T

T∑
t=1

ei~sPjηt − E[ei~sPjηt ]

∣∣∣∣∣
≤ sup

Θ∈Θ

∣∣∣∣∣ 1

T

T∑
t=1

ei~sPj η̂t − 1

T

T∑
t=1

ei~sPjηt

∣∣∣∣∣+ sup
Θ∈Θ

∣∣∣∣∣ 1

T

T∑
t=1

ei~sPjηt − E[ei~sPjηt ]

∣∣∣∣∣
≤ sup

Θ∈Θ

∣∣∣∣∣ 1

T

T∑
t=1

ei~sPjηt(ei~sPj(η̂t−ηt) − 1)

∣∣∣∣∣+ op(1)

≤ sup
Θ∈Θ

1

T

T∑
t=1

∣∣ei~sPj(η̂t−ηt) − 1
∣∣+ op(1)

≤ sup
Θ∈Θ

1

T

T∑
t=1

|~sPj(η̂t − ηt)|+ op(1)

≤ sup
Θ∈Θ

1

T

T∑
t=1

diameter(Ω)
1

cos(π
2
− ε)
|η̂t − ηt|+op(1)

→p 0

where the second inequality follows from the uniform law of large numbers,
the fourth from |eix−1|≤ |x|, the fifth from ε-invertibility, and the convergence
is implied by compactness of Ω and consistency of η̂t.

Hence, by Theorem 2.1 in Newey and McFadden (1994), γ̂ →p γ0.

8.2 Theorem 3.2 (Asymptotic Normality)

Proof. Derivation of asymptotic normality follows the approach in Newey and
McFadden (1994). By dominated convergence, first-order conditions read
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∫
Ω

(
<∂fT

∂γ
(γ̂) =(∂fT

∂γ
(γ̂))

)
WT

(
<fT (γ̂)
=fT (γ̂)

)
d~s = 0 (26)

Applying the mean-value theorem around the true value γ0 yields∫
Ω
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<∂fT

∂γ
(γ̂) =(∂fT

∂γ
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)
WT
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(γ̂ − γ0)

=fT (γ0) + (=∂fT
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(γ̃I))
′
(γ̂ − γ0)

)
d~s = 0

so that, rearranging

√
T (γ̂ − γ0) = −

[∫
Ω

(
<∂fT

∂γ
(γ̂) =(∂fT

∂γ
(γ̂))

)
WT

(
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∂γ
(γ̃R))

′

(=∂fT
∂γ

(γ̃I))
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)
d~s

]−1

√
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∫
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(
<∂fT

∂γ
(γ̂) =(∂fT

∂γ
(γ̂))

)
WT

(
<fT (γ0)
=fT (γ0)

)
d~s

Consider the right-hand side. The first term can be proven to converge uni-
formly in probability, proceeding as in the uniform convergence step in proving
consistency. For the second term, the empirical log-characteristic function con-
verges to a complex normal stochastic process. This follows from convergence
of finite dimensional distributions (by the multivariate central limit theorem
and the delta method) and tightness (tightness was proven for the empirical
characteristic function by Feuerverger, Mureika et al. (1977)6. Since they also
proved almost sure convergence of sup−K≤s≤K |cn(s) − c(s)|, where c denotes
the empirical characteristic function and cn its empirical counterpart, the em-
pirical characteristic function is almost surely bounded away from zero on Ω
for T large enough, and tightness follows).

Then convergence of
√
T (ln( 1

T

∑T
i=1 e

i~vηt)− ln(E[ei~vηt ])) to a complex nor-
mal stochastic process together with the continuous mapping theorem and
the condition

∑n
j=0 aj ln(E[ei~sPjηt ])) = 0 deliver asymptotic normality. If ηt is

known, we directly obtain

√
T (γ̂ − γ0)→d N(0;BV B′)

Interestingly, estimation of ηt does not affect the asymptotic variance thanks
to assumption (ii). Indeed, estimation of ηt can be accounted for by expand-

ing f(γ0, η̂t) into f(γ0, ηt(β0)) + ∂f(γ0,ηt(β))
∂β

(β̂ − β) by the mean-value theorem,
where β is the underlying parameter vector in estimating ηt. The first term

6As pointed out by Csorgo (1981), the result requires slightly stronger conditions than
initially thought. Existence of moments larger than 1 suffices.
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corresponds to the case where ηt is observed. If ηt is an error term inde-
pendent from its regressors wt, as in the case of the VAR since ηt = Θεt is
independent of the past under assumption (ii), then, by the law of iterated

expectations and properties of the Pj,
∂f(γ0,β)

∂β
=
∑n

j=0 aj
E[ei~sPjηt (−wt)P ′j~s′]

E[ei~sPjηt ]
=

−
∑n

j=0 aj
E[E[ei~sPjηt |wt]wtP ′j~s′]

E[ei~sPjηt ]
= −E[wt](

∑n
j=0 ajP

′
j)~s
′ = 0.

Appendix B: Additional derivations

I derive the eigenfunctions and eigenvalues in details. Consider the estimated
counterpart of the integral operator K:
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ei~sjητ

2ϕ̂(~sj)

)
g2(~s)

 d~s

=
1

T

T∑
τ=1

n∑
k=0

n∑
j=0

akaj

∫
Ω

(< ei~tkητϕ̂(~tk)
< e

i~sjητ

ϕ̂(~sj)
− 1
)
g1(~s) + < ei

~tkητ

ϕ̂(~tk)
= e

i~sjητ

ϕ̂(~sj)
g2(~s)

= ei
~tkητ

ϕ̂(~tk)
=i e

i~sjητ

ϕ̂(~sj)
g1(~s) + = ei

~tkητ

ϕ̂(~tk)
<(−i) e

i~sjητ

ϕ̂(~sj)
g2(~s)

 d~s

=
1

T

T∑
τ=1

n∑
k=0

n∑
j=0

akaj

×
∫

Ω

(< ei~tkητϕ̂(~tk)
− 1
)(
< e

i~sjητ

ϕ̂(~sj)
− 1
)
g1(~s) +

(
< ei

~tkητ

ϕ̂(~tk)
− 1
)(
= e

i~sjητ

ϕ̂(~sj)
− 1
)
g2(~s)(

= ei
~tkητ

ϕ̂(~tk)
− 1
)(
< e

i~sjητ

ϕ̂(~sj)
− 1
)
g1(~s) +

(
= ei

~tkητ

ϕ̂(~tk)
− 1
)(
= e

i~sjητ

ϕ̂(~sj)
− 1
)
g2(~s)

 d~s

=
1

T

T∑
t=1

<∑n
k=0 ak

(
eitkητ

ϕ̂(tk)
− 1
)

=
∑n

k=0 ak

(
eitkητ

ϕ̂(tk)
− 1
)

×

[∫
Ω

<
n∑
j=0

aj

(
ei~sjητ

ϕ̂(~sj)
− 1

)
g1(~s) d~s+ =

n∑
j=0

aj

(
ei~sjητ

ϕ̂(~sj)
− 1

)
g2(~s) d~s

]

noting that 1
T

∑
τ
ei
~tkητ

ϕ̂(~tk)
= 1.
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This implies that the eigenfunctions g1 and g2 take the form

g1(~t) =
1

T

T∑
τ=1

cτ<
n∑
k=0

ak

(
ei~tkητ

ϕ̂(~tk)
− 1

)
(27)

and

g2(~t) =
1

T

T∑
τ=1

cτ=
n∑
k=0

ak

(
ei~tkητ

ϕ̂(~tk)
− 1

)
(28)

Substituting these in the system (K̂g)(~t) = µg(~t), it follows that the co-
efficients {cmτ , τ = 1, . . . , T} for m = 1, . . . , T , form the T eigenvectors of the
matrix M with elements

Mτ̃ τ = <
∫

Ω

n∑
j=0

aj

(
ei~sjητ

1
T

∑T
t=1 e

i~sPjηt
− 1

)
n∑
k=0

ak

(
ei~skητ̃

1
T

∑T
t=1 e

i~sPkηt
− 1

)
d~s

The associated eigenvalues correspond to Tµm;T .

If one desires to integrate on Rn, then we can consider integral with respect
to another measure than Lebesgue’s. A leading possibility, as in Carrasco and
Kotchoni (2017), is to use a density function π as weight.

One then needs

Mτ̃ τ = <
∫
Rn

n∑
j=0

aj

(
ei~sjητ

1
T

∑T
t=1 e

i~sPjηt
− 1

)
n∑
k=0

ak

(
ei~skητ̃

1
T

∑T
t=1 e

i~sPkηt
− 1

)
π(~s) d~s

and, to avoid integrating on Rn, one can use a change of variable such as
si = tan(s̃i) coordinate-wise.

Note:
- M/T has eigenvalues µ, eigenvectors E.

φ̂ = 1
T

∑T
τ=1 cτ (

∑n
k=0 ak(

ei~sPkητ

T−1
∑T
τ e

i~sPkητ
− 1))/‖φ‖= E ′B/T/‖φ‖ is a a nor-

malized eigenfunction, using E as the eigenvector. B is the base, i.e., the
collection of (

∑n
k=0 ak(

ei~sPkητ

T−1
∑T
τ e

i~sPkητ
− 1)).

- ‖φ‖=
√
E ′ME/T =

√
µ

- < φ̂, f >=
∫
fE ′B/T/

√
µΠ(d~s)

- Q = 1/T 2
∑

τ
1

µ2τ+α
|E ′τ

∫
fB|2.
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Complex-valued derivation

(Kg)(~t) =

∫ ∑
j

∑
k

ajak
∑
τ

(
e−~tPkητ ei~sPjητ

T ϕ̂(−~tk)ϕ̂(~sj)
− 1

)
g(~s) d~s

=
1

T

∑
τ

∑
k

ak

(
e−~tPkητ

1
T

∑
τ e
−~tPkητ

− 1

)∫
Ω

∑
j

aj

(
ei~tPjητ

1
T

∑
τ e

i~tPjητ
− 1

)
g(~s) d~s

(29)

so eigenfunctions are linear combinations of the
∑n

k=1 ak(
e−i~tPkητ

1
T

∑T
τ=1 e

−i~tPkητ
−1).
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